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Overview

e Numerical Relativity at UTB.

e The puncture approach.

e The LazEv Framework.

e Higher order finite-differencing.

e Stability issues with punctures.

e Headon collision results.

e Moving punctures, and QCO results.

e Conclusion

A He @ @



Motivation

LDAS
Hanford
relative orbit
of spacecraft

LDAS
Software 3

LDAS
Developmer
LDAS Test
LDAS CIT

. LDAS
Livingston



Numerical Relativity at UTB

Goal: to obtain highly accurate BBH waveforms (critical for extracting
physics from LISA signals)

Lazarus and the numerical to perturbative transition (gr-qc/0510122)
Conformal thin-sandwich initial data (gr-qc/0505120 gr-qc/0502067)
Post-Newtonian initial data (gr-qc/0207011)

BSSN style numerical evolutions with punctures (gr-qc/0505055)



Lazarus
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e Consider the orbiting BBH problem as 3 different problems: inspiral,
merger, ringdown

e Solve each problem using tools most suited for that problem

e merge the solution together



Nonlinear evolutions

The LazEv framework (PRD 72 (2005) 024021, qr-qc/0505055)
We use various flavors of BSSN

Dynamical gauges

Higher order finite differencing

Puncture style evolutions

Fisheye coordinates

Radiative BCs



The puncture approach

No excision with Singularity avoiding slicing
No inner boundary conditions
Physically motivated data

Ideally suited for BSSN (¢ can handle singular behavior analytically)



Puncture vs. excision

advantages

— Simpler to implement
— Don't need to worry inner boundaries and excision inconsistencies

— Superior waveforms

problems

— Can never resolve all features near the puncture

— May not have continuum limit

— Puncture induces high frequency features that can kill a run

— Fixing puncture position can lead to grid distortions that kill a run



How we handle puncture problems

Reduce the differencing order near the puncture (higher-order — higher
error)

upwinding — avoid differencing across the puncture @ ¢ o o @D .
corotation — reduce distortions due to fixed punctures
What about moving punctures ?

Can't use KO dissipation near the punctures



The LazEv Framework

e MOL integrator (RK2, RK3, RK4, ICN2)

e Mathematica scripts which convert PDEs to finite difference algorithms
e Supports arbitrary FD order

e Supports arbitrary FD stencils (e.g. upwinded, centered, mixed

e Quickly implement new evolution system as they become available

e Quickly implement new gauge conditions as they become available



Higher order FD

e \Why would you use higher order methods.

— Error scale as h™, computational expense as 1/h*. Break even at
fourth-order. Second-order (W/O FMR,AMR) is too expensive.
— Higher effective resolution for the same number of gridpoints.

e Problems and Alternatives

— Harder to stabilize
— More complicated boundaries.

— 2nd order AMR and FMR can produce better results at lower cost
(FishEye)
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Techniques

Shift / No Shift (Gamma driver)

Upwinding / no upwinding ([0; — 8'0;]F = RHS)

‘LOR’ (2nd order evolution inside AH)

Second-order upwinding (4th order unstable near punctures)

Dissipation (Kreiss Oliger)

2

VAR INAN
/T \
JT 1] \
I \
| \
| ! |
| |
| |
0 +
| Fo
| P
| N R I |
|\ A A I
| I O I I |
AW /
\r
L1/
-2 ib




BBH data

We evolved Brill Lindquist data for Headon collision of two equal mass,
non-spinning black holes.
We chose these data because:

Symmetries allow us to evolve using 1 octant (cheap)
No initial data solver required, and no ID error.
Waveforms known from 2D codes, Lazarus, AEl 3d runs

Can use published parameters for gauge conditions.
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BBH Waveforms

0.005 F | | = 1 0.0002
"""""" g —
— extrapolation
0.003 -
0.0001 |-
0.001 |
04
Yy |
~0.001 -
-0.0001 -
-0.003 -
~0.005 ‘ ‘ ‘ ‘ ‘ ‘ ‘ | ‘ -0.0002
0

0 10 20 t/ 3? 40 50

13



—— p =2 2nd order
-------------- p =4 2nd order
0.002 extrapolation |
—-—- p =1 4th order
p = 2 4th order
p = 4 4th order
vy Ol N ETTN
0
-0.002 ‘ : ‘ ‘ L \ ‘ \ ‘
25 30 35 40 45 50



[
~—~
S | g
I >
(a\| = V....
| 3 Z
Q> /-
5 | o
o N7
\ _ F \coooao
—— <t TS
__ 4 __ \\-. 'l'
L= .
4E s |\|\ _
o I Ll -—
wfl = l\l.ﬂ”.
Pl llllllllllllll
m - l,l,lh-clnaau
P s AP S
H ,\
e
m\.._l G m—e—
< \
"'l'l',.avnl'cntlohtﬂrt' - o o
llllllllll J
e e
\‘ llll
S ", |
- o /""\J
'e
N\
-
- =
\‘
’
| , 1L |
. . o N S
S s = 5 :

50

40

30

20

10

t/M

Figure 2: {=4,m =0

15



0.0006

0.0004

0.0002 -

V4

-0.0002 -

~0.0004 ‘ ‘ ‘ | ‘ | ‘
15 20 25 30 35

Figure 3: ({ =4,m = 0)

16



—— 4th-order
e 2nd-0Order

10
z/M (fisheye)

17



AN
NN TS

0.5

40

Figure 4: Rescaled constraint violation (p = 1 by 107>, p = 2 by 16 x 107?)

18



0.9998

0.9992

0.999
0

boundary at 26 M

2 (boundary at 63 M i
2
4 (boundary at 26 M

—
[ —— p
Iy

20 | 40 | 60 | 80
t/M

Figure 5: Horizon mass

19



QCO via moving punctures
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QCO results

h = Mugm/24

M = 91 M a4 (approx)
C = (.897,.9027)

My ~ 972M am,

3, = -6784+.008 (Lazarus: .7)

FEraq == .026 M4, (Lazarus 2.4% - 2.6%)

m [1+\/1 a/M r
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movie
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Conclusion

The LazEv framework allows for fast development of new codes based
on 3 + 1 decompositions.

We obtained very accurate waveforms using puncture style BSSN
evolution with fourth-order stencils.

We can evolve orbiting black holes using the puncture approach with
moving punctures.

Future Work

— Explore QC sequence
— Evolve CTSP data
— Unequal mass mergers
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